
A Comparison of the Declarative Modelling
Languages B, Dash, and TLA+

Ali Abbassi, Amin Bandali, Nancy A. Day, and Jose Serna
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1

Email: {aabbassi, abandali, nday, jserna}@uwaterloo.ca

Abstract—Declarative behavioural modelling is a powerful
modelling paradigm that enables users to model system func-
tionality abstractly and concisely. We compare two well-used
formal declarative modelling languages, B and TLA+, with a new
modelling language called Dash. Dash is an extension of Alloy
with explicit syntactic constructs for modelling transition systems,
and it includes control state hierarchy and events. Particular
topics that we cover in our comparison are: differences in the
datatypes and type systems; how the transitions/operations can
be described; how the transition relation is a combination of
the transitions; and the default choice each language makes
regarding permitted variable changes in a transition. Our goal
is to discuss the interesting differentiating characteristics of each
language to aid users in determining which language is the most
suitable for their system.

I. INTRODUCTION

Behavioural modelling languages that are declarative enable
users to model system functionality abstractly and concisely,
providing early feedback through analysis of a model. A
behavioural model is a model of a transition relation, i.e.,
pairs of variable-value mappings (which we call snapshots)
that represent the possible steps of the system.

The declarative behavioural modelling paradigm, as repre-
sented by languages such as Z [1], VDM [2], B [3], Alloy [4],
and TLA+ [5], generally has the following characteristics:

1) Describes transitions through constraints (rather than cal-
culations).

2) Supports user-introduced datatypes and rich datatypes,
such as lists, trees, and rings, with an axiomatization of
their behaviour.

3) Has a formal semantics, usually rooted in first-order logic
(FOL) and/or set theory.

4) Is one integrated model.
Because of item (1) above, declarative models are not nec-
essarily executable. Models can be used for any level of
system description, however, declarative models are valued for
their abstractness and conciseness, making them useful very
early in the system development process during requirements
engineering. Because of their formal roots in FOL, automated
analysis of the behaviour via model checking has previously
been limited. More recently, as analysis methods such as

bounded model checking (BMC [6]) and finite model finding
have been developed, model checking of declarative models
has become a tractable problem, increasing the value of
declarative modelling. In bounded model checking, there is
a limit placed on the number of steps of a transition relation
that are verified. In finite model finding, a finite limit is placed
on the size of all sets making the problem decidable.

We compare two well-used declarative modelling languages,
each with model checking support, B [3] and TLA+ (Temporal
Logic of Actions) [5], with a new modelling language we are
developing called Dash [7], [8]. Dash is an extension of Alloy
with explicit syntactic constructs for modelling transition
systems, and it includes labelled control state hierarchy and
events inspired by Statecharts [9]. Model checking support
for Dash is accomplished via a translation to Alloy [8].

A general categorization of different kinds of systems can be
made with respect to whether the system’s behaviour is more
control-oriented or more data-oriented. Control-oriented sys-
tems generally have simple datatypes and simple operations on
these datatypes, but complex behaviour with respect to when
a transition is taken. The Statecharts [9] family of languages
with hierarchical and concurrent labelled control states were
developed to model this control complexity. Data-oriented
systems have rich datatypes (such as lists and structures), but
limited complexity with respect to when transitions can be
taken; typically all transitions can be taken at any moment
(subject to the preconditions of a transition).

The method we followed for our comparison is to model
a small number of reactive systems across the spectrum of
data-oriented and control-oriented systems. From these efforts,
we devised aspects to describe differences and similarities
among the languages. Our contribution is to elucidate the
differences in the syntactic modelling constructs provided
by each language for describing a transition system and the
semantic meaning of these top-level constructs. Because the
semantics of a language are implicit, it is useful to have a clear
statement of their subtle differences, such as how transitions
are combined to form a transition relation, to ensure that a
user’s model is an accurate representation of the system. We
leave for future work comparisons regarding robustness and
performance of tool support.978-1-5386-8406-1/18/$31.00 c©2018 IEEE

II. BACKGROUND

The purpose of all three languages we compare is to repre-
sent a unique transition system, i.e., a description of dynamic
system behaviour specifying how the model moves from one
variable to value mapping, called a snapshot, to another.
Each of these moves is one transition. All the languages we
compared are intended to describe abstract behaviour. Thus,
they are all built on first-order logic and set theory to describe
rich datatypes (e.g., uninterpreted types, relations/tables, func-
tions). The behaviour of the functions and relations can be
uninterpreted (i.e., unconstrained), semi-interpreted (i.e., partly
axiomatized) or completely interpreted (i.e., defined). All of
the languages allow models to be written without describing
the size of sets (the scopes); the scopes may need to be chosen
for analysis. In each language, there is a method for describing
snapshots and transitions. In all languages the package of
behaviour in a transition is atomic (i.e., transitions cannot
interfere with each other). Next, we provide a brief overview
of each of the languages. We show examples of the languages
in Section IV.

A. B

The B language describes software systems formally as
interacting abstract machines. It was first developed by Abrial,
and has continued to be developed for commercial usage. The
backbone of B is first-order logic and set theory. Sets can be
specified using set comprehension, or set operations such as
Cartesian product, intersection, power set, etc., and can be used
for updating a variable’s value, and creating constraints. Pred-
icates can be axiomatized or defined using propositional logic
operations and set predicates such as membership, subset, etc.
Relations over sets are elements of the Cartesian product of
sets. Functions can be declared explicitly by using function-
specific type syntax (for partial, total, surjective functions etc.),
or implicitly by restricting relations.

Each abstract machine is comprised of multiple sections that
together describe a model. Each abstract machine starts with
the keyword MACHINE, which is followed by the name of the
machine and ends with the END keyword. The keyword SETS

begins a section that declares the sets used in the model. Sets
can be used as types in B with the ‘:’ syntax in the INVARIANT

section, which is called a membership predicate. Subtyping is
not supported explicitly but can be achieved using predicates.
If the type of the sets in an operation does not match, B’s
typechecker will raise an error. The elements of a set can be
enumerated where it is introduced, or later can be constrained
in the operations or invariants.

The section on CONSTANTS declares the constant (unchang-
ing) elements of a model. The PROPERTIES section contains
constraints on constants. Snapshot elements are declared un-
der the keyword VARIABLES. The INVARIANT section contains
constraints that must be proven to hold in every snapshot of
a model. The type constraints for variables must be stated
in this section as membership predicates. The ASSERTIONS

section contains the properties to be checked. The initial
snapshot of a model is described under the INITIALISATION

keyword using assignments. And finally, transitions are spec-
ified using operations under the OPERATIONS keyword. The
postconditions of an operation are generalized substitutions
of new values of snapshot elements. Various statements are
allowed in these substitutions, such as skip, assignment, non-
deterministic assignment from sets, and precondition followed
by postcondition. Any of these can be combined in parallel or
sequential order.

B provides users with the ability to further refine their
abstract machines, as they progress in a project, but we did
not use this facility in our study.

We used the ProB [10] tool for model checking our B
models. Another tool for B is AtelierB [11].

B. Dash

Dash is a new language that we are developing for writing
declarative behavioural models; it combines the abstractions of
first-order logic and set theory with common control-oriented
modelling constructs such as labelled control state hierarchy
and named events. Dash is an extension to the Alloy language
for describing behavioural models.

In Dash, a transition has a labelled control state as its source
and destination. The control state hierarchy is described in a
nested manner where state means a basic state or OR-state
and conc state means an AND-state. Some parts of Dash can
be described graphically using standard Statecharts notation
(as in 2), however, for generality, Dash is a textual language.
In Dash, a transition has the following structure:

1 trans <name> {
2 from <src_state>
3 on <trigger_event>
4 when <guard_condition>
5 goto <dest_state>
6 do <action>
7 send <generated_event>
8 }

Every part of a transition is optional, and if not present, the
meaning is given by the context. The from part indicates
the source state of a transition while the goto part describes
the destination state; if either of these parts is omitted, its
value is the most immediate state that contains the transition
definition. The on part describes the event that triggers a
transition and the when part specifies the guard condition. The
action of a transition is specified using the do keyword and
any internal events generated are stated using send. Guard
conditions and actions are described using Alloy syntax where
unprimed variables names refer to the values of snapshot
elements in the source snapshot and primed variable names are
the values in the destination snapshot. Alloy formulas include
set operators and make extensive use of the join (.) operator
since everything in Alloy is a set (scalars are represented as
singleton sets).

Inside a state, Dash supports the declaration of the snapshot
elements using Alloy’s types. In a declaration, the keyword
env designates a snapshot element as a monitored variable.
The value of a controlled variable can be modified by ac-
tions of transitions, whereas the value of monitored variables

changes non-deterministically. The keyword event introduces
named events, such as “button pushed”, which are names for
occurrences at a moment in time that can trigger a transition.
In Dash, labelled control states are used as namespaces so
different snapshot elements can have the same name as long
as they are not declared in the same control state. Constants
are declared outside of states using Alloy syntax.

Dash follows the usual semantics of Statecharts: transitions
from states higher in the hierarchy have priority over those
lower in the hierarchy, and concurrent states can each take
one transition in response to an environmental input forming
big steps (consisting of multiple transitions).

We used tools that we developed for Dash to translate Dash
to Alloy and used the Alloy Analyzer for model checking [8].
Our tools are built using Xtext [12]1.

C. TLA+

TLA+ is a formal specification language developed by
Leslie Lamport, based on the idea that using simple math-
ematics is the best way to write formal descriptions; and that
a specification language should provide the bare minimum
required for writing simple mathematics to describe systems
precisely. TLA+ has first-order logic with an untyped classical
set theory as its modelling language.

TLA+ specifications are organized into modules, each of
which can extend (import) other modules. The most common
sections in a TLA+ module are CONSTANTS, VARIABLES, and
ASSUME blocks, and two-snapshot predicates (operators) called
actions, which are transitions. Users must create a top-level
transition relation combining two-snapshot predicates. In addi-
tion to propositional and predicate logical connectives, TLA+

has built-in operators for working with various datatypes:
typical set operations from set theory (e.g., ∈, ∪, and ⊆),
functions, as well as records and tuples, both of which are
syntactic sugar on top of functions.

We used the tools in the TLA Toolbox, which includes
the SANY parser and semantic analyzer for TLA+ [13],
the TLC model checker [14], [13], the PlusCal algorithm
language [15], the TLATEX pretty printer [13], and the TLAPS
(TLA+ Proof System) [16]. TLA+ supports model refinement.
Note that even though the TLATEX pretty printer is usually
used for typesetting TLA+ specifications, for the purposes of
consistency with the other two languages discussed in this
paper, TLA+ excerpts are shown in ASCII notation, as input
by a modeller.

III. METHODOLOGY

To compare the three languages, we chose a variety of
small examples across the range of data-oriented to control-
oriented systems. All the examples correspond to reactive
systems in that they interact with their environment and either
do not have a final snapshot or have a final snapshot with
a loop. Strongly data-oriented models have rich datatypes
(such as tables/relations that change over time), but limited

1Our tool is available online at http://129.97.7.33:8080/dash/

EH
ea

lth

fa
rm

er
pu

zz
le

m
us

ica
l c

ha
irs

m
ut

ex

di
gi

tal
watc

h
bi

t c
ou

nt
er

data-oriented control-oriented

Fig. 1. Range of Models

need for specifying when a transition is relevant. Strongly
control-oriented models have limited datatypes (e.g., numbers,
Booleans, arrays of fixed size), but are rich in their need to
describe when a transition is relevant, typically dependent on
modes and priorities. Some languages implicitly, through their
semantics, control whether a transition is examined to see if
it can be taken in a step (e.g., the semantics of hierarchical
control states of Statecharts determine whether a transition is
relevant or not); other languages require users to explicitly
encode any such relevancy requirements.

Figure 1 shows our evaluation of where our six examples
fit on the spectrum of data-oriented to control-oriented. For
each of these examples, we created a model in each of the
three languages. It is difficult to judge them for equivalence
because they do not have exactly the same snapshot space,
depending on what variables are chosen for the snapshot (e.g.,
control state hierarchy) and how the behaviour was allocated to
transitions. It was important to allow each modeller to describe
the behaviour in the way that was the most natural in the
language. We used two methods to check their equivalence: 1)
inspection and discussion; and 2) verification of approximately
the same set of temporal properties in each model, some of
which were domain-independent properties. Since the tools
varied in whether they supported LTL (Linear Temporal Logic)
or CTL (Computation Tree Logic), our properties are not
necessarily exactly the same in the different languages.

The EHealth example (originally in [17]) resides at the
far left end of the characterization spectrum, as it uses rich
datatypes like sets and tuples and has no need for controlling
when a transition is relevant beyond preconditions. EHealth
is an electronic health system that ensures that medications
prescribed to patients are safe, by keeping track of the known
dangerous interactions between the medications recorded in
the system. The system allows a transition adding a medication
to a patient’s prescription if and only if it does not interact
dangerously with any of the other medication previously
prescribed to that patient. We formulated and checked that
this safety property is an invariant of the system.

The farmer puzzle example is a famous puzzle in which a
farmer wants to move his animals and a bag of seeds without
any of them being eaten by any other. The transitions are the
possible moves of the farmer. The puzzle example fits just
after EHealth in our spectrum. This example does not have
any events or concurrency. The only control required on when
a transition is relevant is the location of the farmer.

http://129.97.7.33:8080/dash/

Fig. 2. Model of a two-bit counter

The musical chairs example (originally in [18] and modelled
in Alloy in [19]) resides somewhere in the middle of the
characterization spectrum. The modes of the game (players are
sitting, walking, etc.) are represented using control states, and
it has interesting datatypes to represent the mapping between
the players of the game and the chairs they sit on. We checked
some safety and liveness properties.

The mutex example is a well-used example for preventing
two concurrent processes from entering their shared section
at the same time. On our spectrum, the mutex example is
located after the musical chairs example, because there is more
complexity in when a transition is relevant than in musical
chairs and its datatypes are fairly simple.

The digital watch example is an adaptation of Harel’s
model [9]. The model hierarchically decomposes a watch’s
behaviour, and makes extensive use of environmental events
for the buttons of the watch to enable transitions. We verified
some reachability properties.

The bit counter example (adopted from [20]) models a two
bit counter with concurrent states for each bit. The control
state hierarchy of the model is depicted in Figure 2 using
standard Statecharts notation. The bit counter example is a
good representative of a control-oriented model because it
naturally utilizes state hierarchy, concurrency, and cascading
effects between concurrent regions from an environmental in-
put. We checked that the model always reacts to environmental
events, and that operations are successfully completed.

Prior to our work, the musical chairs, digital watch and bit
counter examples had previously been done in Dash by us;
the mutex example existed in B and TLA+ by other authors;
and the EHealth example had previously been done by one of
our authors in TLA+. All the other models were created for
this paper. Our models are available at: https://cs.uwaterloo.
ca/∼nday/models/2018-modre .

IV. COMPARISON

In the next sections, we describe the differences and similar-
ities we observed as we modelled our examples in the various
languages.

A. Datatypes, Typechecking, Snapshot Declaration

Each language supports datatypes that describe the possible
values for either snapshot variables or constants. All the
languages support the declaration of uninterpreted sets/types,
which are critically important in the formal description of
requirements at an abstract level. To compare the languages,
Figure 3 shows an equivalent snapshot declaration in each
language.

In B, sets are declared in the SETS section and the names
of the snapshot elements are listed in the VARIABLES section.
The types of variables are included under INVARIANT (which
must be proven). Scalars are permitted as on line 17 as well
as set types (using the power set as a type). The types of
snapshot variables (the expressions following the ‘:’) are
called membership predicates and can be described using a
rich syntax. There is no explicit means of defining multiplicity
of relations; these can be added as constraints (lines 28–31).

Built-in types in B consist of numbers, sequences, records,
strings, and trees. Any of these datatypes have their own
pre-defined operations available to users. For example, type
tree(S) is a set of trees over the domain of S. A typechecking
pass is able to determine if the value of an argument is of
the correct type before more expensive analysis. B does not
support subtyping, but it can be accomplished using predicates.
For example, a parent type is defined in the SETS section
(line 3), and a constant predicate is defined, as in lines 11 and
34, to model the subtyping, and must be used as a precondition
for any use of the R1 relation.

Dash uses Alloy signatures for set declarations on line 4. A
subtype is created on line 7 using the extends keyword. Alloy
does not support multiple inheritance. Based on Alloy, in Dash
every variable is a set or a relation and any set can be used as
a type. There are no scalars, thus line 11 of the Dash model
creates a set of A’s and line 13 shows how to create a singleton
set equivalent to a scalar. The type declaration of one Int is
implicitly an invariant stating that set v2 must always be a
singleton set in all snapshots. These typing invariants limit the
reachable snapshot space (as opposed to being properties to
prove about the model). It is possible to create an inconsistent
description if there is a transition that adds two elements to
this set.

Functions can be created in Alloy using a small range of
multiplicity keywords such as lone (partial function) or one

(total function). Additionally, constraints can be added to
require a relation to have a certain multiplicity, as in the two
facts on lines 21–24 and lines 27–30, which require f2 to be
surjective and R1 to have multiplicity 1:2. These are invariants
of the model and constrain the reachable snapshot space. Also
note that C is a subtype of A and on line 19 the domain of R1

must be drawn from C only.
Somewhat hidden to users of Alloy is that there is no

structure/packaging mechanism for data such as a record. The
state syntax in Dash is translated to a snapshot signature in
Alloy where each of the variables of the snapshot are actually
relations between the snapshot and the variable value. It can

https://cs.uwaterloo.ca/~nday/models/2018-modre
https://cs.uwaterloo.ca/~nday/models/2018-modre

1 // B
2 SETS
3 A; B;
4 Event = {ev1, ev2}
5
6 VARIABLES
7 v1, v2, f1, f2, R1,
8 event
9
10 CONSTANTS
11 isC
12
13 INVARIANT
14 // a set of A
15 v1: POW(A) &
16 // a singletone integer
17 v2: INTEGER &
18 // a total function
19 f1: A --> B &
20 // a surjective function
21 f2: A -->> B &
22 // binary relations
23 R1: A * B &
24 // Multiple events can

happen simultaneously
25 event: POW(Event) &
26 // multiplicity constraint
27 // isC is predicate for

subtype
28 !(var).(var: A & isC(var)

<=>

29 card(R1(var)) = 2 &
30 not (isC(var)) =>
31 card(R1(var)) = 0)
32
33 PROPERTIES
34 isC: A --> BOOL

1 // Dash
2 open util/integer
3
4 sig A,B {}
5
6 // C is a subtype of A
7 sig C extends A {}
8
9 state Example {
10 // a set of A’s
11 v1: set A,
12 // a singleton set of Ints
13 v2: one Int,
14 // total function
15 f1: A one -> one B,
16 // function
17 env f2: A -> one B,
18 // This means C x B
19 R1: C -> B,
20
21 fact f2_is_Surjective {
22 all b:B |
23 some a:A | a->b in f2
24 }
25
26 // R1 multiplicity is 1:2
27 fact R1_multiplicity {
28 all a:A |
29 #a.R1 = 2
30 }
31
32 event ev1 {}
33
34 }

1 * TLA+
2 EXTENDS Integers, FiniteSets
3
4 CONSTANTS
5 A, B, C
6
7 VARIABLES
8 v1, v2, f1, f2, R1, ev1
9
10 * helper operators
11 Range(f) ==
12 {f[x] : x \in DOMAIN f}
13 SurFun(a, b) ==
14 {f \in [a -> b] :
15 b = Range(f)}
16 Singleton(S) ==
17 {{i} : i \in S}
18 RelRange(R) ==
19 {x[2] : x \in R}
20 RelDomRes(S, R) ==
21 {x \in R : x[1] \in S}
22 OneToN(R, n) ==
23 \A x \in RelDom(R) :
24 Cardinality(RelRan(

RelDomRes(R, {x}))) = n
25
26 TypeOK ==
27 /\ v1 \in A
28 /\ v2 \in Singleton(Int)
29 /\ f1 \in [A -> B]
30 /\ f2 \in SurFun(A, B)
31 * \X means cross product
32 /\ R1 \in C \X B
33 /\ OneToN(R1, 2)
34 /\ ev1 \in BOOLEAN

Fig. 3. Snapshot Declarations in B, Dash, and TLA+

be confusing to users to understand the output of the analysis
(e.g., counterexamples for model checking) when a variable
name is actually a relation.

Alloy has no built-in datatypes, but it has library modules
for the types Booleans, integers, lists, and graphs. The lack of
built-in types in Alloy, in particular the integer type, comes
from the finite model approach to analysis; since Alloy does
not support the full behaviour of integers. Integers are a
finite set of abstract objects just like any other set in Alloy.
Typechecking is limited to checking if a set must be empty
under the constraints of a specification [21].

In TLA+, sets are often used as building blocks for more
complex datatypes. For instance, the Peano module includes
Peano’s axioms used for the set Nat of natural numbers, with
its zero element and the successor function [13]. In recent
TLA+ versions, naturals along with other standard modules
such as bags and sequences are built into TLA+ and are
implemented in the host language (Java) to improve efficiency.

In TLA+, a snapshot declaration is created by declaring the
variables in the VARIABLES section. Because TLA+ does not
have a type system, typing constraints are explicitly stated
as regular constraints. An example of this is demonstrated
in the right-most column of Figure 3, where TypeOK is a

typing invariant. These invariants must be proven. In our
experience, having to manually add typechecking invariants
in the absence of a typechecker can be error-prone, and can
hinder the debugging experience: errors arising from violating
typing constraints can result in cryptic error messages.

Lastly, TLA+ distinguishes between relations and functions:
a function is an object mapping a domain to a codomain,
described using the ‘==’ syntax, but a relation is a set of tuples.
Functions are used behind the scenes for defining many of the
built-in datatypes like sequences (tuples) and records.

Dash provides explicit syntax for stating that a snapshot
variable is part of the environment (using the keyword env),
meaning that it is monitored and not controlled. This dis-
tinction affects the semantics of transitions in that an envi-
ronmental variable is allowed to change non-deterministically
whereas a non-environmental variable is either constrained in
the transition or keeps its previous value. B and TLA+ do not
provide this distinction.

Dash has explicit syntax for creating events (illustrated on
line 32), which are occurrences at a moment in time (e.g.,
“button pressed”, “card swiped”). Events are often helpful
in describing the abstract behaviour of reactive systems. The
semantics of events is that they persist as long as transitions are

enabled allowing multiple transitions to be taken in response to
an environmental input. Neither B nor TLA+ support named
events so some representation, such as making them Booleans,
must be chosen by a modeller.

None of the languages explicitly support operators for
dynamic allocation of parts of the state (i.e., “new” as in
Spin [22]).

B. Expressions

In this section, we discuss what operators are available to
write expressions in each language.

Since all the languages are based on first-order logic and set
theory, their expressions are reasonably similar in succinctness.
They all provide operations to modify relations and functions.
Alloy/Dash makes extensive use of the join (.) operator; in
particular variables that are part of a snapshot, s, can be
accessed using s.v, which actually means the join operation
of the snapshot set with the relation, but looks very much like
a record access.

B has the most imperative style in that changes to vari-
ables in a postcondition of an operation and initial values of
variables are both described using the assignment syntax. As-
signment can be to a non-deterministically chosen value. These
assignments can be combined using operators such as ‘||’ and
‘;’ for parallel and sequential assignments, respectively.

In addition to the common operators, TLA+ has the follow-
ing constructs: CHOOSE operator, IF..THEN..ELSE expressions,
CASE expressions, and LET..IN expressions.

Each language has packaging mechanisms for expressions
to support modularity in specifications. In Dash, the pred

construct of Alloy is a named, parameterized constraint that
can be used in other constraints. Similarly, the fun construct
of Alloy is a named, parameterized function that returns a
value and can be used in other constraints. Alloy functions
and predicates are unfolded prior to analysis. In B, functions
and relations must be declared in the CONSTANTS section and
axiomatized in the PROPERTIES section. There is no mechanism
to define blocks with return values that do not form part of the
model space, such as Dash/Alloy predicates and functions. In
TLA+, one can define new operators using ‘==’. For instance,
on lines 11-12 of the right-most column in Figure 3 we define
the Range operator, which is absent in TLA+. TLA+ also
supports recursive and higher-order operators, which take other
operators as arguments.

C. Initialization, Transitions, and Transition Relation

In this section, we discuss how a transition system is
created in each language. Each transition is an atomic set
of constraints that relate a pair of snapshot elements. To
illustrate this discussion, Figures 4 and 5 show equivalent parts
of the musical chairs example in the three languages. Type
constraints in B and TLA+ have been omitted for brevity.
Table I summarizes some of the terminology used in the three
languages.

Initialization: B and Dash have explicit sections devoted
to expressing the initial constraints, whereas in TLA+ any

definition name can be used; by convention, it is Init as on
line 12 and later it is referred to directly in the statement
of the transition system on line 51. In Dash and TLA+, any
constraints can be used to limit the initial variable values so
their initial constraints are similar (subject to differences in the
syntax). In TLA+, every variable must be initialized, which
means that it is mentioned in an initialization constraint. For
initialization in B, assignments (‘:=’) and non-deterministic
choice from a set (‘::’) must be used for all variables, and
combined by parallel composition (‘||’). Because of this
limitation, we were unable to specify that initially the number
of players is one greater than the number of chairs. We could
have made this a snapshot constraint (i.e., always true) but that
would be stronger than an initial constraint and we wanted to
make it a property that is proven to be invariant about the
model, so we chose to leave it out and make it true when we
chose the scopes for analysis. Our B model of musical chairs
requires the extra variables PickedPlayer and PickedChair

(for reasons that we will explain later) so these must also be
initialized.

Transitions: Figures 4 and 5 include one musical chairs
transition in each language – the one for when the music stops
and the players find seats, populating the occupied function.
In B, transitions are called OPERATIONS; in Dash, the keyword
trans is used; in TLA+ no keyword is necessary because users
must model explicitly how the transitions will be combined.
Because Dash has labelled control states, it can make the
modes of musical chairs (standing, sitting, etc.) the source
state of transitions, whereas in B and TLA+, these modes are
variables and referred to in the preconditions of the transitions.
It might have been possible to eliminate the state variable
completely based on the status of the occupied variable, but
this simplification would not be possible in all models. The
textual description of the state hierarchy in Dash allows a
transition to recognize its context and implicitly determine its
source state, which makes the description more concise.

Dash has explicit events (such as MusicStops) to describe
the occurrence of the music ending. In B, we encoded an event
set (called event). In TLA+, we used a Boolean variable to
represent when the music is on or off. There are multiple ways
to encode events, but depending on a user’s understanding of
the problem, explicit events may feel more natural to use.

In TLA+ any expression relating snapshots can describe
a transition. Furthermore, in TLA+ there is no syntactic
distinction between preconditions and postconditions. In B,
the precondition and postcondition are explicitly labelled (key-
words PRE and THEN), as in Dash (keywords when and do).
In Dash and TLA+, unprimed variable values are the values
of variables before a transition and primed versions of the
variables refer to their value after the transition has been taken.
In Dash any expression in the language can go in the pre-
condition and postcondition of a transition. For example, the
constraint that occupied is a total function is specified on lines
36–37. The equivalent constraint in TLA+ is on lines 30–31,
which uses a type-like syntax. In B, postconditions are more
structured and must be stated as assignments. To mimic the

1 // extracts of B model of musical chairs
2 SETS
3 State = {standing, sitting, walking, won};
4 Event = {MusicStarts, MusicStops};
5 Chairs;
6 Players
7
8 VARIABLES
9 activePlayers, state, PickedPlayer, PickedChair

, occupied, activeChairs, event
10
11 INVARIANT
12 // type constraints
13 activePlayers : POW1(Players)
14 & state : State
15 & activeChairs : POW(Chairs)
16 & PickedPlayer : Players
17 & PickedChair : Chairs
18 & occupied : Chairs --> Players & event : Event
19
20 INITIALISATION
21 activePlayers, state, activeChairs, occupied,

event :=
22 Players, standing, Chairs, {}, MusicStops ||
23 PickedPlayer :: Players ||
24 PickedChair :: Chairs
25
26 OPERATIONS
27 ...
28
29 MusicStops =
30 PRE
31 event = MusicStops &
32 state = walking
33 THEN
34 state := sitting
35 END;
36
37 Assignment =
38 PRE
39 (not (dom(occupied) = activeChairs))
40 & state = sitting
41 THEN
42 PickedChair::(activeChairs - dom(occupied));
43 PickedPlayer::(activePlayers-ran(occupied));
44 occupied := (occupied \/
45 {PickedChair |-> PickedPlayer})
46 END;
47
48 ...
49 END

1 // extracts of Dash model of musical chairs
2 open util/integer
3
4 sig Chairs, Players {}
5
6 conc state Game {
7 // Game variables
8 activePlayers: set Players
9 activeChairs: set Chairs
10 occupied: Chairs set -> set Players
11
12 event MusicStarts {}
13 event MusicStops {}
14
15 init {
16 #activePlayers > 1
17 #activePlayers = (#activeChairs).plus[1]
18 // all Chairs and Players included
19 activePlayers = Players
20 activeChairs = Chairs
21 occupied = none -> none
22 }
23
24 default state Start { ... }
25
26 state Walking {
27 trans Sit {
28 on MusicStops
29 goto Sitting
30 do {
31 occupied’ in
32 activeChairs -> activePlayers
33 activeChairs’ = activeChairs
34 activePlayers’ = activePlayers
35 // occupied’ must be total function
36 all c : activeChairs’ |
37 one c .(occupied’)
38 // each occupying player is
39 // sitting on one chair
40 all p : Chairs.(occupied’) |
41 one occupied’.p
42 }
43 }
44 }
45
46 state Sitting { ... }
47 state End { ... }
48 }

Fig. 4. Musical Chairs in B and Dash

constraints on occupied in the postcondition of the transition,
in B we had to decompose it into two operations (MusicStops
and Assignment) where Assignment incrementally matches

a player with a chair. An operation will be completed only
if the precondition is satisfied. In any of these operations,
the generalized substitutions or assignments can be taken in
parallel or sequentially, by using ‘||’ for parallel and ‘;’ for
sequential.

Dash includes some syntactic sugar for writing transitions
concisely, which we have not illustrated. Transition compre-
hension allows a set of similar transitions (e.g., every state has
a transition to an error state on an error event) to be expressed
using a pattern. Add-ons allow an action (e.g., increase a

counter) to be added to multiple transitions. And transition
templates provide a parameterized way to create transitions.

Transition Relation: In TLA+, the transition relation must
be stated explicitly (line 51), thus modellers have complete
flexibility in how the transitions are combined. Contradictions
within a postcondition can cause deadlock as no transition can
be taken.

In B, the transition relation is implicitly (pre1 ∧ post1) ∨
(pre2 ∧ post2) ∨ . . .; which means if more than one precon-
dition is satisfied, only one of the postconditions needs to be
satisfied.

In Dash, the transition relation is formed implicitly follow-
ing the semantics of concurrent, hierarchical state machines.

TABLE I
COMPARING TERMINOLOGY OF B, DASH, AND TLA+

Language Initial State (s) Transitions (s,s’) Snapshot Constraint (s) What is Verified
B INITIALISATION OPERATIONS PROPERTIES INVARIANT (may include type constraints

on snapshot elements), assertions, LTL
Dash init trans invariant, type constraints CTL with fairness constraints
TLA+ Init implicit ASSUME, state and action constraints in

model settings
invariants (may include type con-
straints), extended LTL

1 * extracts of TLA+ model of musical chairs
2 EXTENDS Integers, FiniteSets
3
4 CONSTANTS CHAIRS, PLAYERS
5
6 VARIABLES
7 activePlayers, activeChairs,
8 occupied, music_playing, state
9
10 STATE_ == {"Start","Walking","Sitting","Won"}
11
12 Init ==
13 /\ Cardinality(activePlayers) > 1
14 /\ Cardinality(activePlayers)
15 = Cardinality(activeChairs) + 1
16 * all Chairs and Players included
17 /\ activePlayers = PLAYERS
18 /\ activeChairs = CHAIRS
19 * initially the empty function
20 /\ occupied = <<>>
21 /\ music_playing \in BOOLEAN
22 /\ state = "Start"
23
24 ...
25
26 Sit ==
27 /\ state = "Walking"
28 /\ ∼music_playing
29 * force occupied to be total
30 /\ occupied’ \in
31 [activeChairs -> activePlayers]
32 * each chair maps to only one player
33 * \A is forall
34 /\ \A c \in activeChairs,
35 p1, p2 \in activePlayers:
36 occupied’[c] = p1 /\ occupied’[c] = p2
37 => p1 = p2
38 * each occupying player sits on one chair
39 /\ \A p \in Range(occupied’),
40 c1, c2 \in DOMAIN occupied’:
41 occupied’[c1] = p /\ occupied’[c2] = p
42 => c1 = c2
43 /\ state’ = "Sitting"
44 /\ UNCHANGED <<activeChairs, activePlayers,

music_playing>>
45
46 ...
47
48 Next == ... \/ Walk \/ Sit \/ ...
49
50 vars == << activePlayers, activeChairs,

occupied, music_playing, state >>
51 Spec == Init /\ [][Next]_vars

Fig. 5. Musical Chairs in TLA+

For a transition to be taken, the snapshot must include the
source state of the transition and transitions exiting states
at a higher level in the hierarchy have priority over lower
states. Particularly distinct from the other languages is the
concurrent states found in a Dash model. Because of this
concurrency, Dash makes the distinction between big steps
and small steps in the transition relation. Big steps consist
of multiple small steps, which are each one transition. In a
big step, at most one transition per concurrent region can
be taken. Environmental events can change only at big step
boundaries (called a stable snapshot) so the occurrence of an
environmental event can trigger multiple transitions as long
as the transitions are in different concurrent regions. Events
generated by one transition can trigger other transitions (in
different concurrent regions) within the same big step as
happens in the bit counter example.

The difference between these methods of creating a transi-
tion relation from the transitions was most noticeable in the bit
counter example, which has concurrency. In the TLA+ model,
since the sequence of transitions to be taken following a tick
was clear from the model, the transitions of state Bit1 and
state Bit2 (see Figure 2) were collapsed into one transition
where all state changes happened in the same step. In another
concurrent model, it may not be so obvious how to create a
transition relation combining transitions in concurrent regions.

Frame Problem: All languages face the issue of how
snapshot variables are allowed to change in a step. In TLA+,
every variable must be constrained by the transition, either
by being declared UNCHANGED or by a predicate describing its
value in the next state. In B, any variable not mentioned in
the assignments retains its value from the previous step. This
choice of semantics follows from B’s imperative nature. In
Dash, with its syntactic designation of environmental vari-
ables, if the primed version of a non-environmental variable is
not mentioned in the postcondition, it keeps its value from the
previous snapshot; environmental variables are unconstrained
in the next stable snapshot and may not be constrained in
postconditions. In Dash, there is the potential for an invariant
(fact) to contradict the postcondition of a transition, which
means that no transition system exists that satisfies the de-
scription.

Stuttering: The semantics of each language define what
happens if there is no transition to be taken. If none of the
preconditions are satisfied, B takes the generous approach and
can make a transition to a state that satisfies the constraints de-
fined in the INVARIANT section. In Dash, the non-environmental

variables remain unchanged but the environmental variables
can change. In TLA+, a transition relation is accompanied by
a tuple of variables such that every transition either satisfies
the transition relation or leaves those variables unchanged.
This admits stuttering transitions that do not affect those
variables. In TLA+ this is specified using the [][Next]_vars

(line 51) notation, where Next is the transition relation of the
specification and vars is a tuple of variables. Lastly, if the
system reaches a snapshot where the precondition of no action
holds, the system is said to have reached deadlock.

Snapshot Constraints: A snapshot constraint is a constraint
on all snapshots that implicitly limits the reachable snapshot
space beyond how transitions have already limited it. In
B, these are called PROPERTIES and are used to limit the
behaviour of constants rather than snapshot variables. It is
possible to create an inconsistent model through contradicting
constraints. In Dash, these are part of an invariant block
and they can limit any part of the model. In TLA+, there are
assumptions, written in the ASSUME block. Snapshot and action
constraints, written in TLC model settings, can restrict possible
snapshots and transitions respectively. In Dash and TLA+, the
combination of transitions and snapshot constraints may result
in an inconsistent/deadlocked model.

The final column of Table I states the term each language
uses as the name of the section describing the properties-
to-be-verified (if these go in a particular section) and the
kind of properties allowed. In B and TLA+, invariants, which
may include type constraints, are part of the properties-to-be-
verified; whereas in Dash, invariants and type constraints limit
the reachable snapshot space.

D. Scalability

In this section, we consider how well the modelling lan-
guages support larger models, which require decomposition.
In B, modules can be linked via one of INCLUDES, SEES, USES,
EXTENDS, PROMOTES, and IMPORTS sections. By mentioning the
name of a machine within these sections of another machine,
the machines can interact.

In Dash, the state hierarchy provides a means of decom-
posing a model. Models parts can be written in multiple files
and file concatenation is used to put the parts together. The
snapshot declaration itself can be decomposed into parts that
appear at different places in the state hierarchy. To reference
a snapshot element declared in a different state, its name is
prefixed by the state where it is declared. Separate namespaces
create interfaces while still using global communication.

TLA+ has a module system, which allows modellers to
group related pieces of a specification together. Typically,
each module resides in its own file. Modules can extend
other modules, using the EXTENDS keyword, which brings
definitions and declarations into scope. Submodules can be
created by nesting one module inside another. TLA+ also has a
mechanism for instantiating modules, using the INSTANCE and
WITH keywords, which not only allows for creating multiple
instances of a module with different values substituted for the

declared variables, but can also be used as a mechanism for
variable hiding [13].

V. RELATED WORK

Comparisons between modelling languages are useful to
provide users with a means of discerning which modelling
language is most suitable for their systems. Some textbooks
(e.g., [23], [24], [25], [26]) introduce various formal and
informal modelling languages each with their own examples
(or occasionally the same example) to illustrate the language.
Ardis et al. [27] compared a number of formal modelling
languages on the same example, however, none of the lan-
guages they compared are the three languages we include.
The criteria these authors created to compare the languages are
much higher level concerns, such as testability and language
maturity, than our comparison which focuses on how a model
is written in a language. Lamport and Paulson [28] compare
specification with and without a type system. Newcombe et
al. [29] compare TLA+ and Alloy, and conclude that TLA+’s
data operations, together with its higher order and recursive
operators, make descriptions simpler than Alloy’s for engi-
neers particularly with respect to nested record structures. Our
comparison focuses more on the semantics of the transition
system constructs whereas Newcombe et al. focus on usage
of the language and its tool support. Sullivan et al. [30]
compared three methods for modelling transition systems in
Alloy (without extensions) for performance.

We chose to compare our new language, Dash, to B and
TLA+ because of the similarities in the target audience of the
three languages, namely, abstract, formal specification early
in the development process. Other similar languages that we
could have compared to are: Z [1], VDM [2], Abstract State
Machines (ASMs) [31], and Event-B [32], which all describe
transition systems abstractly. In particular, we plan to compare
to Event-B, which uses “events” (which are not the same as
Statecharts’ events) as packages of behaviour. Dash is the
only language that has native support for events and other
common control-oriented abstractions, and at the same time
provides rich datatypes for specifying data-oriented models.
Even though control state hierarchy can be encoded into these
languages (e.g., [33]), the task is not trivial.

Statecharts-based languages and UML state machines [34]
provide a graphical manner to describe system behaviour,
but do not completely fall into the category of declarative
specification languages: their semantics are often not fully
formal and they lack support for declaring datatypes. OCL [35]
is a declarative language that can be used in combination with
UML to constrain the pre and postconditions of transitions.

The languages of model checkers such a SMV [36] and
Spin [22] are lower-level descriptions than what is often
convenient for a user. nuXmv [37] is a re-implementation
and extension of SMV that adds support for verification of
infinite datatypes, such as integers and reals, and incorpo-
rates a verification engine with state-of-the-art SAT-based
algorithms. However, they all have limited support for user-
declared datatypes. Furthermore, in SMV/nuXmv the scope

of datatypes and relations must be set at modelling time,
which forces users to modify their models every time they
want to analyze and check properties in at larger scope. In
contrast, in B, Dash, and TLA+ scopes are set at analysis
time. Chang and Jackson [38] explored creating a BDD-based
model checker for transition systems specified declaratively.
One of the major differentiators of Spin is the support for
dynamic changes to the number of processes, whereas in most
other tools the scope of elements is fixed during the analysis.
Many authors have explored translations from descriptions in
higher-level modelling languages to the input languages of
model checkers.

VI. CONCLUSION

Each modeller will have their own preferences and each
system will have its own characteristics so we can draw
few definitive conclusions regarding the three languages we
compared. Overall, we found that B’s typechecking would
catch the most type errors prior to more expensive analy-
sis, however, Dash/Alloy’s subtyping is often convenient and
natural for those with an object-oriented background. Alloy
makes everything a set for simplicity in semantics and tool
building, but it is a barrier for a novice user, and the lack of
built-in types is unconventional. In B and TLA+, the explicit
typing constraints are properties to be checked whereas in
Dash, the type constraints limit the reachable snapshot space,
which often matches the user’s intention for type constraints.
TLA+ provides the most flexibility to define the transition
relation because users describe it explicitly, but this flexibility
adds extra work for them. B and Dash force users to separate
pre and postconditions of a transition, which provides clear
structure to a model of a transition system. Dash stands out
for control-oriented systems where transitions can naturally be
factored based on modes and divided into concurrent regions.
Modelling independent concurrency (where the synchroniza-
tion between concurrent states is not obvious) in B and TLA+

would be difficult and less clear. We hypothesize that the abil-
ity to model concurrent regions separately from each other is
extremely valuable when modelling a distributed system. The
importance of each of these factors must be considered relative
to the domain of the requirements engineering problem.

In future work, we would like to extend our comparison to
include other similar languages and also extend our compari-
son criteria to include an examination of tool support, which
would address issues such as performance, robustness, and
ease of understanding counterexamples.

REFERENCES

[1] J. M. Spivey, The Z Notation: A reference manual, ser. International
Series in Computer Science (2nd ed.). Prentice Hall, 1992.

[2] C. B. Jones, Systematic Software Development Using VDM (2nd Ed.).
Prentice-Hall, Inc., 1990.

[3] J.-R. Abrial, The B Book: Assigning Programs to Meanings. Cambridge
University Press, Aug. 1996.

[4] D. Jackson, Software Abstractions, 2nd ed. MIT Press, 2012.
[5] Y. Yu, P. Manolios, and L. Lamport, “Model checking TLA+ specifica-

tions,” in CHARME, 1999, pp. 54–66.
[6] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded

model checking,” Advances in Computers, vol. 58, pp. 117–148, 2003.

[7] J. Serna, N. A. Day, and S. Farheen, “Dash: A new language for
declarative behavioural requirements with control state hierarchy,” in
International Workshop on Model-Driven Requirements Engineering @
RE. IEEE Computer Society, 2017, pp. 64–68.

[8] J. Serna, N. A. Day, , and S. Esmaeilsabzali, “Dash: Declarative
modelling with control state hierarchy (preliminary version),” Univ. of
Waterloo, Cheriton School of Comp. Sci., Tech. Rep. CS-2018-04, 2018.

[9] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
of Comp. Prog., vol. 8, no. 3, pp. 231–274, 1987.

[10] M. Leuschel and M. Butler, “ProB: an automated analysis toolset for the
B method,” Soft. Tools for Tech. Transfer, vol. 10, no. 2, pp. 185–203,
2008.

[11] A. ClearSy, “AtelierB,” Training Manual, vol. 2, 2002.
[12] “Xtext,” https://eclipse.org/Xtext/, 2017, [Online; accessed 15-June-

2018]. [Online]. Available: https://eclipse.org/Xtext/
[13] L. Lamport, Specifying Systems: The TLA+ Language and Tools for

Hardware and Software Engineers. Addison-Wesley, June 2002.
[14] Y. Yu, P. Manolios, and L. Lamport, “Model checking TLA+ specifica-

tions,” in CHARME. Springer, 1999, pp. 54–66.
[15] L. Lamport, “The PlusCal algorithm language,” in Theoretical Aspects

of Computing, ser. LNCS, no. 5684. Springer, 2009, pp. 36–60.
[16] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz, “Verifying

Safety Properties With the TLA+ Proof System,” in International Joint
Conference on Automated Reasoning, ser. Lecture Notes in Artificial
Intelligence, vol. 6173. Springer, Jul. 2010, pp. 142–148.

[17] J. S. Ostroff, “Validating software via abstract state specifications,” York
University, Tech. Rep. EECS-2017-02, 2017.

[18] N. Nissanke, Formal Specification: Techniques and Applications.
Springer, 1999.

[19] S. Farheen, “Improvements to transitive-closure-based model checking
in Alloy,” MMath thesis, Univ. of Waterloo, Cheriton School of Comp.
Sci., 2018.

[20] S. Esmaeilsabzali, “Prescriptive semantics for big-step modelling lan-
guages,” Ph.D. dissertation, Univ. of Waterloo, Cheriton School of
Comp. Sci., 2011.

[21] J. Edwards, D. Jackson, and E. Torlak, “A type system for object
models,” in ACM SIGSOFT Software Engineering Notes, vol. 29, no. 6.
ACM, 2004, pp. 189–199.

[22] G. Holzmann, The Spin model checker: primer and reference manual.
Addison-Wesley Professional, 2003.

[23] N. Nissanke, Formal Specification: Techniques and Applications.
Springer, 1999.

[24] V. Alagar and K. Periyasamy, Specification of Software Systems.
Springer, 1998.

[25] S. L. Pfleeger and J. M. Atlee, Software Engineering: Theory and
Practice. Pearson, 2006.

[26] D. Bjoner and M. C. Henson, Logics of Specification Languages.
Springer, 2008.

[27] M. A. Ardis, J. A. Chaves, L. J. Jagadeesan, P. Mataga, C. Puchol,
M. G. Staskauskas, and J. Von Olnhausen, “A framework for evaluating
specification methods for reactive systems experience report,” IEEE
Trans. on Soft. Eng., vol. 22, no. 6, pp. 378–389, Jun. 1996.

[28] L. Lamport and L. C. Paulson, “Should your specification language be
typed,” ACM Trans. on Prog. Lang. and Systems, vol. 21, no. 3, pp.
502–526, 1999.

[29] C. Newcombe, “Why Amazon chose TLA+,” ABZ, vol. 8477, pp. 25–39,
2014.

[30] A. Sullivan, K. Wang, and S. Khurshid, “Evaluating State Modeling
Techniques in Alloy,” in Workshop on Software Quality Analysis, Mon-
itoring, Improvement, and Applications, 2017, pp. 11–13.

[31] E. Börger and R. Stärk, Abstract state machines: a method for high-level
system design and analysis. Springer, 2012.

[32] J.-R. Abrial, Modeling in Event-B: System and Software Engineering,
1st ed. New York, NY, USA: Cambridge University Press, 2010.

[33] E. Sekerinski, “Graphical design of reactive systems,” in International
B Conference. Springer, 1998, pp. 182–197.

[34] “OMG unified modeling language,” http://www.omg.org/spec/UML/2.5/
PDF/, 2015, [Online; accessed 15-June-2018].

[35] “OMG object constraint specification (OCL) specification,” http://www.
omg.org/spec/OCL/2.4/PDF, 2014, [Online; accessed 15-June-2018].

[36] K. L. McMillan, “The SMV system,” in Symbolic Model Checking.
Springer, 1993.

https://eclipse.org/Xtext/
https://eclipse.org/Xtext/
http://www.omg.org/spec/UML/2.5/PDF/
http://www.omg.org/spec/UML/2.5/PDF/
http://www.omg.org/spec/OCL/2.4/PDF
http://www.omg.org/spec/OCL/2.4/PDF

[37] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuXmv symbolic model
checker,” in CAV, ser. LNCS, vol. 8559. Springer, 2014, pp. 334–342.

[38] F. S.-H. Chang and D. Jackson, “Symbolic Model Checking of Declar-
ative Relational Models,” in ICSE, May 2006, pp. 312–320.

	Introduction
	Background
	B
	Dash
	TLA+

	Methodology
	Comparison
	Datatypes, Typechecking, Snapshot Declaration
	Expressions
	Initialization, Transitions, and Transition Relation
	Scalability

	Related Work
	Conclusion
	References

